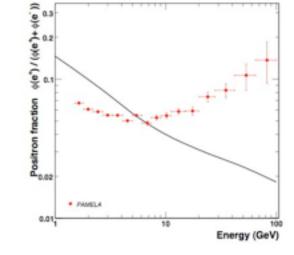

Dark Z (in comparison to Dark Photon)

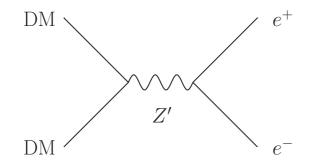
based on several works with H. Davoudiasl, I. Lewis, W. Marciano, and M. Sher (arXiv:1203.2947, 1205.2709, 1303.6653, 1304.4935)

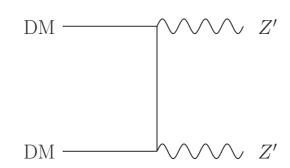

Hye-Sung Lee (William and Mary / JLab)

Brookhaven Forum 2013 May 2013

Prelude

Dark Force (New gauge interaction in Dark sector)




Dark Force carrier: Light Z' [a new gauge boson of $m_{Z'} \sim O(1)$ GeV] with suppressed couplings

(Topic discussed in some talks in this workshop: Carone, Schuster, Spray, ...)

DM annihilation at Galactic center with "GeV-scale gauge boson" can explain

- (1) 511 keV gamma-ray (INTEGRAL) [Fayet (2004)]
- (2) Positron excess (ATIC, PAMELA) [Arkani-Hamed, Finkbeiner, Slatyer, Weiner (2008)]

Also, g_{μ} - 2 anomaly (3.6 σ) can be explained [Fayet (2007); Pospelov (2008)].

$$(\text{magnetic moment}) = -\frac{g\mu_B S}{\hbar}$$

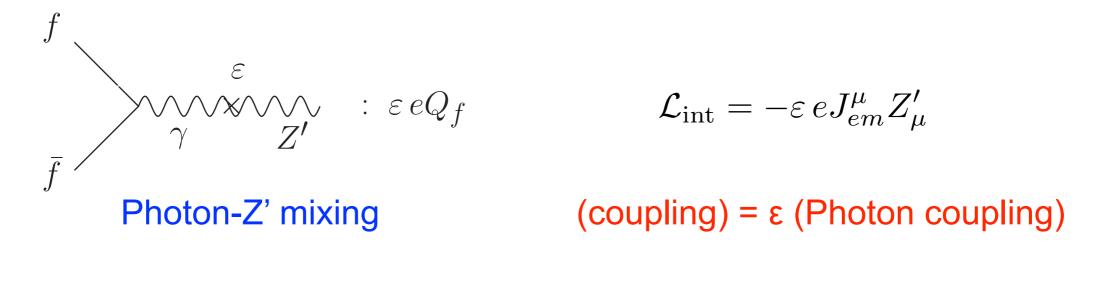
Outline

Many searches of this new fundamental force (Dark Force) are actively going on especially at Low-Energy experimental facilities (such as JLab in Virginia).

In this talk,

- (i) We generalize the "Dark Photon" to "Dark Z".
- (ii) We expand the relevant Dark Force search experiments.
 - 1. Overview of Dark Photon (well-established benchmark model)
 - 2. Dark Z (model with H. Davoudiasl and W. Marciano)
 - 3. Dark Z Implications for Parity-Violating Experiments
 - 4. Dark Z Implications for Rare Meson/Higgs Decays

1. Overview of Dark Photon


Dark Photon

Consider a U(1)' gauge symmetry - Dark U(1) - under which the SM particles have "zero" charges.

Z' couples to SM particles through kinetic mixing of U(1)_Y & U(1)'. [Holdom (1986)]

$$\mathcal{L}_{kin} = -\frac{1}{4}B_{\mu\nu}B^{\mu\nu} + \frac{1}{2}\frac{\varepsilon}{\cos\theta_W}B_{\mu\nu}Z'^{\mu\nu} - \frac{1}{4}Z'_{\mu\nu}Z'^{\mu\nu}$$

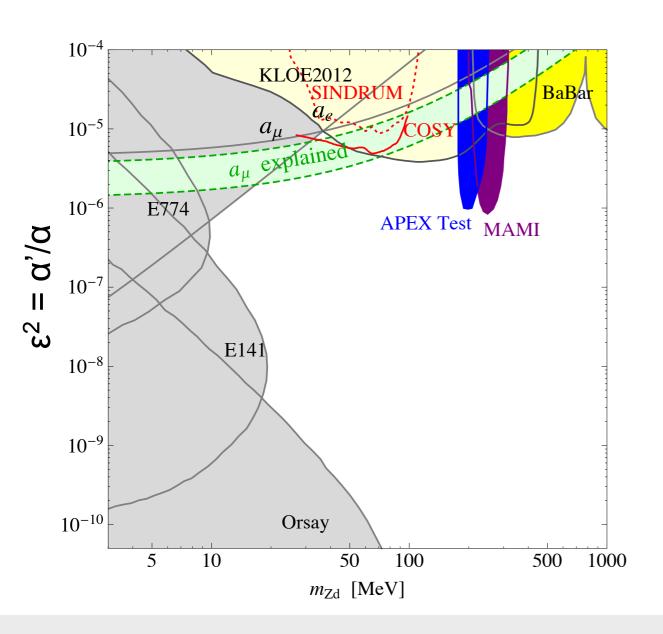
Typical phenomenology of the U(1)_Y & U(1)' kinetic mixing is carried out in the setup that Z' couples only to EM Current just like Photon (\rightarrow Dark Photon).

Puzzling at first glance since the kinetic mixing is B-Z' mixing. $B_{\mu} = \cos \theta_W A_{\mu} - \sin \theta_W Z_{\mu}$ (What happened to Z-Z' mixing?)

Higgs structure matters

Dark Photon is justified in the simplest Higgs sector

"SM Higgs doublet + Higgs singlet" (Higgs singlet: to give mass to Z').

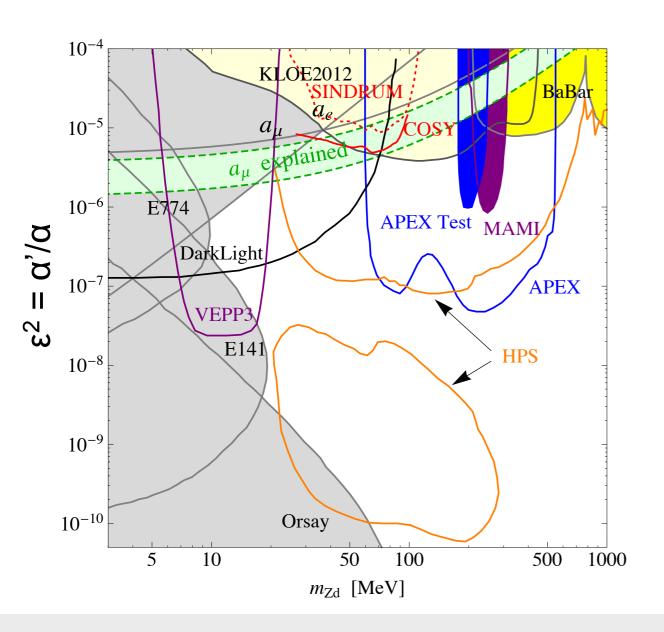

Z-Z' kinetic mixing is cancelled by Z-Z' mass mixing (which is "induced by kinetic mixing") at Leading order.

$$\mathcal{L}_{\rm int} \sim -eJ^{\mu}_{em}A_{\mu} - (g/\cos\theta_W)J^{\mu}_{NC}Z_{\mu}$$
 (Kinetic mixing diagonalization)
$$\rightarrow -eJ^{\mu}_{em}[A_{\mu} + \varepsilon Z'_{\mu}] - (g/\cos\theta_W)J^{\mu}_{NC}[Z_{\mu} + O(\varepsilon)Z'_{\mu}]$$
 (Z-Z' mass matrix diagonalization)
$$\rightarrow -eJ^{\mu}_{em}[A_{\mu} + \varepsilon Z'_{\mu}] - (g/\cos\theta_W)J^{\mu}_{NC}Z_{\mu}$$
 depends on Higgs sector for 1 Higgs doublet + singlet

$$J_{\mu}^{NC} = \left(\frac{1}{2}T_{3f} - Q_f \sin^2 \theta_W\right) \bar{f} \gamma_{\mu} f - \left(\frac{1}{2}T_{3f}\right) \bar{f} \gamma_{\mu} \gamma_5 f$$

Dark Force couplings depend on Higgs sector. (We will use this observation to introduce "Dark Z" which couples to NC.)

Dark Photon Searches

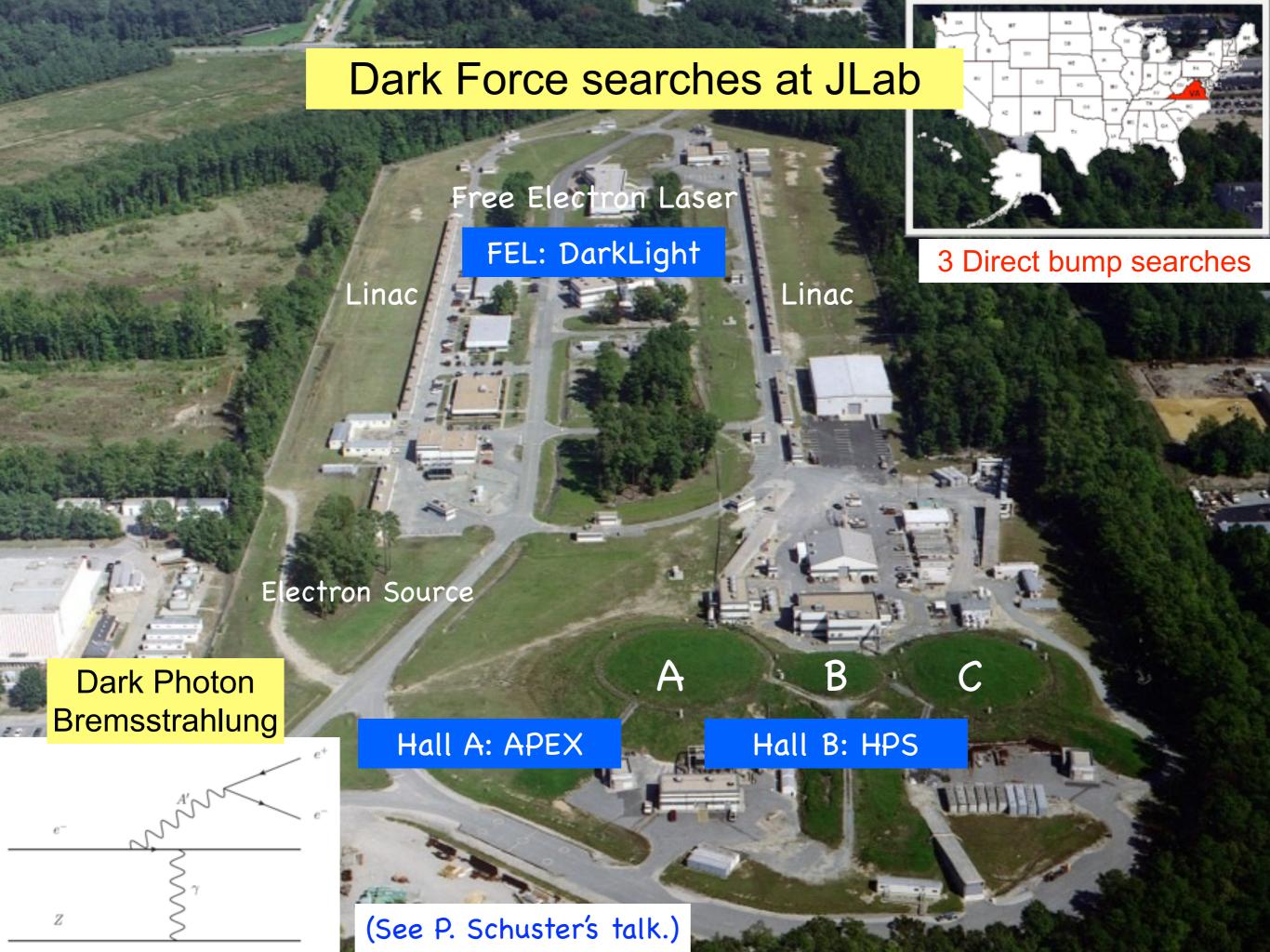

Numerous studies of Dark Photon phenomenology

[Pospelov,Ritz (2008)]
[Reece,Wang (2009)]
[Bjorken,Essig,Schuster,Toro (2009)]
[Freytsis,Ovanesyan,Thaler (2009)]
and many more ...

Current and Future coverage in the $(m_{Z'}, \epsilon^2)$ plane

- 1. g-2 (for e, μ). [green band: explains g_{μ} 2 anomaly]
- 2. Beam-dump experiments (E137, E141 at SLAC; E774 at Fermilab)
- 3. Meson decays: $\Upsilon(bb) \rightarrow \chi Z'$ (BaBar); $\phi(ss) \rightarrow \eta Z'$ (KLOE); $\pi(dd) \rightarrow \chi Z'$ (COSY)
- 4. Fixed target experiments: New experiments designed for direct Dark Photon search (APEX, HPS, DarkLight, MAMI, VEPP3)

Dark Photon Searches



Numerous studies of Dark Photon phenomenology

[Pospelov,Ritz (2008)]
[Reece,Wang (2009)]
[Bjorken,Essig,Schuster,Toro (2009)]
[Freytsis,Ovanesyan,Thaler (2009)]
and many more ...

Current and Future coverage in the $(m_{Z'}, \epsilon^2)$ plane

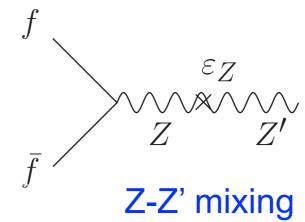
- 1. g-2 (for e, μ). [green band: explains g_{μ} 2 anomaly]
- 2. Beam-dump experiments (E137, E141 at SLAC; E774 at Fermilab)
- 3. Meson decays: $\Upsilon(bb) \rightarrow \chi Z'$ (BaBar); $\phi(ss) \rightarrow \eta Z'$ (KLOE); $\pi(dd) \rightarrow \chi Z'$ (COSY)
- 4. Fixed target experiments: New experiments designed for direct Dark Photon search (APEX, HPS, DarkLight, MAMI, VEPP3)

2. Dark Z

: a variant of Dark Photon with "axial coupling"

General Higgs sector

Dark Photon vs. Dark Z


Common part: $U(1)_Y \& U(1)'$ kinetic mixing

Different part: simplest vs. more general Higgs sector

Now, Z-Z' mixing angle does not vanish in general.

$$\varepsilon_Z = \frac{m_{Z'}}{m_Z} \delta$$

(δ : small model-dependent quantity)

We do not need to specify Higgs sector, but it can be realized with 2HDM (Type I):

H₁ → SM Higgs doublet

 H_2 [with nonzero U(1)' charge] \rightarrow gives mass to Z' (+ optional Higgs singlet H_d)

$$\delta = \sin \beta \sin \beta_d$$
 (with $\tan \beta \equiv v_2/v_1$, $\tan \beta_d \equiv v_2/v_d$)

(δ is a function of vacuum expectation values.)

Dark Z

The Z' couples to EM Current ($\propto \epsilon$: Photon-Z' mixing) as well as the weak Neutral Current ($\propto \epsilon_Z$: Z-Z' mixing).

[\(\mathbf{Y}, \mathbf{Z}\)]
$$\mathcal{L}_{\mathrm{int}}^{\mathrm{SM}} = -eJ_{em}^{\mu}A_{\mu} - (g/\cos\theta_{W})J_{NC}^{\mu}Z_{\mu}$$
[Dark Z] $\mathcal{L}_{\mathrm{int}}^{Z'} = -\left[\varepsilon\,eJ_{em}^{\mu} + \varepsilon_{Z}\,(g/\cos\theta_{W})J_{NC}^{\mu}\right]Z_{\mu}'$ ($\varepsilon_{Z} = \delta\,m_{Z'}/m_{Z}$)

(coupling) = ε (Photon coupling) + ε_{Z} (Z coupling)

: a combination of Photon and Z couplings

To emphasize the difference from Dark Photon (with only Photon coupling), we refer our Z' to "Dark Z boson". (In $\varepsilon \rightarrow 0$ limit, only Z coupling)

New axial coupling bring new properties (Parity Violation, Enhancement for boosted Z', ...), which are inherited from Z boson.

In a rough sense, (Dark Photon) ≈ Heavy-version Photon, (Dark Z) ≈ Light-version Z.

3. Dark Z Implications for Parity-Violating Experiments

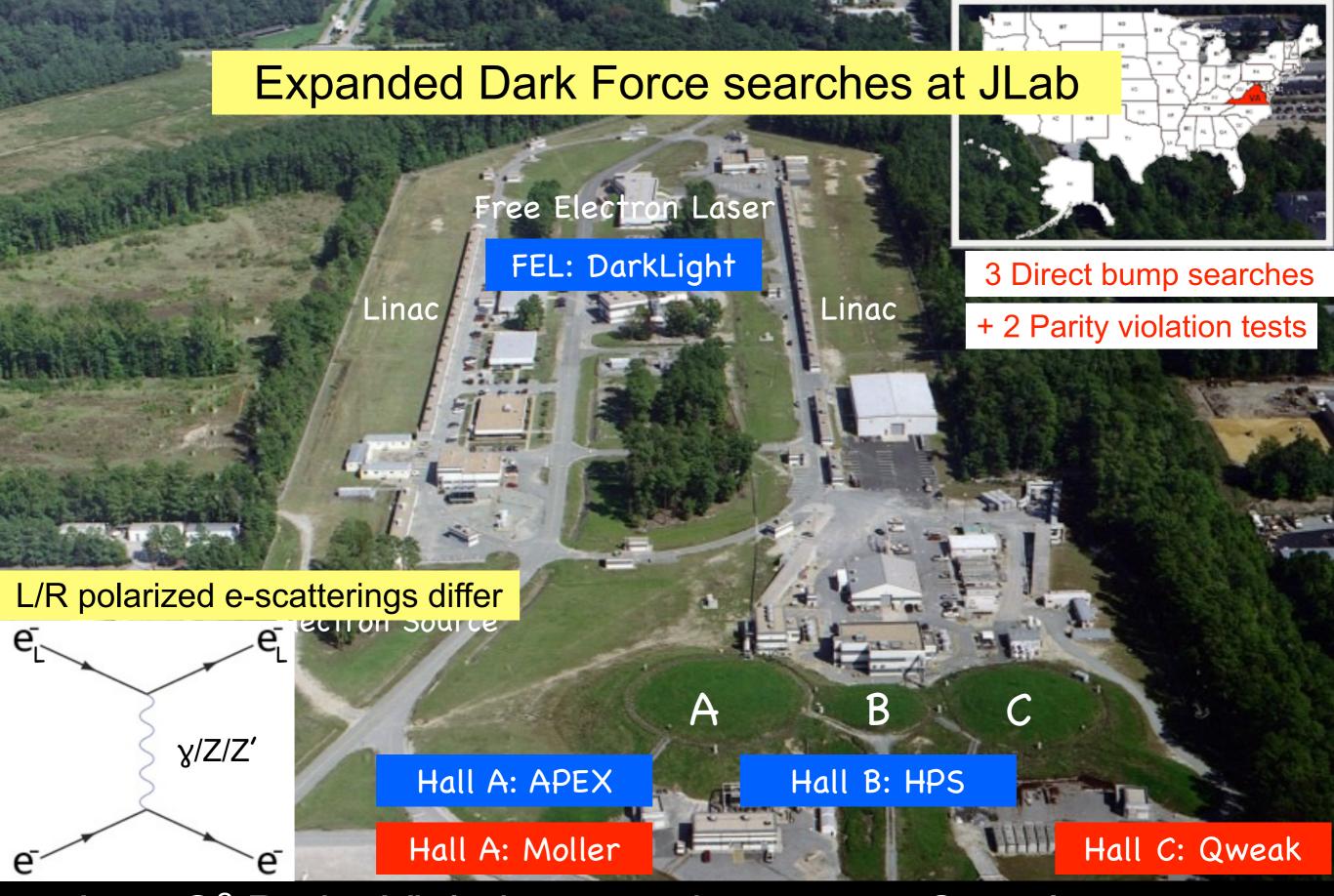
Dark Z effects on Neutral Current phenomenology

Dark Z effect comes as **modification** of effective Lagrangian of Z-mediated scattering.

$$\mathcal{L}_{\text{eff}} = -\frac{4G_F}{\sqrt{2}} J_{NC}^{\mu} (\sin^2 \theta_W) J_{\mu}^{NC} (\sin^2 \theta_W)$$

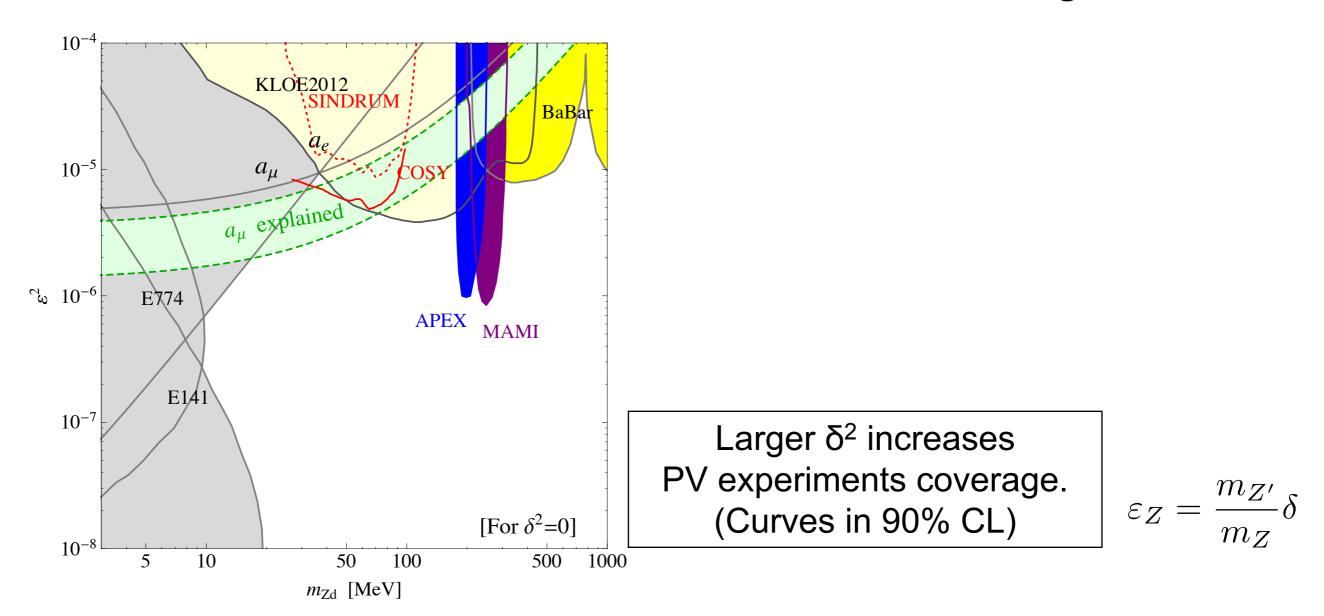
$$G_F \to \left(1 + \delta^2 \frac{1}{1 + Q^2/m_{Z'}^2} \right) G_F$$

$$\sin^2 \theta_W \to \left(1 - \varepsilon \delta \frac{m_Z}{m_{Z'}} \frac{\cos \theta_W}{\sin \theta_W} \frac{1}{1 + Q^2/m_{Z'}^2} \right) \sin^2 \theta_W$$


$$J_{NC}$$

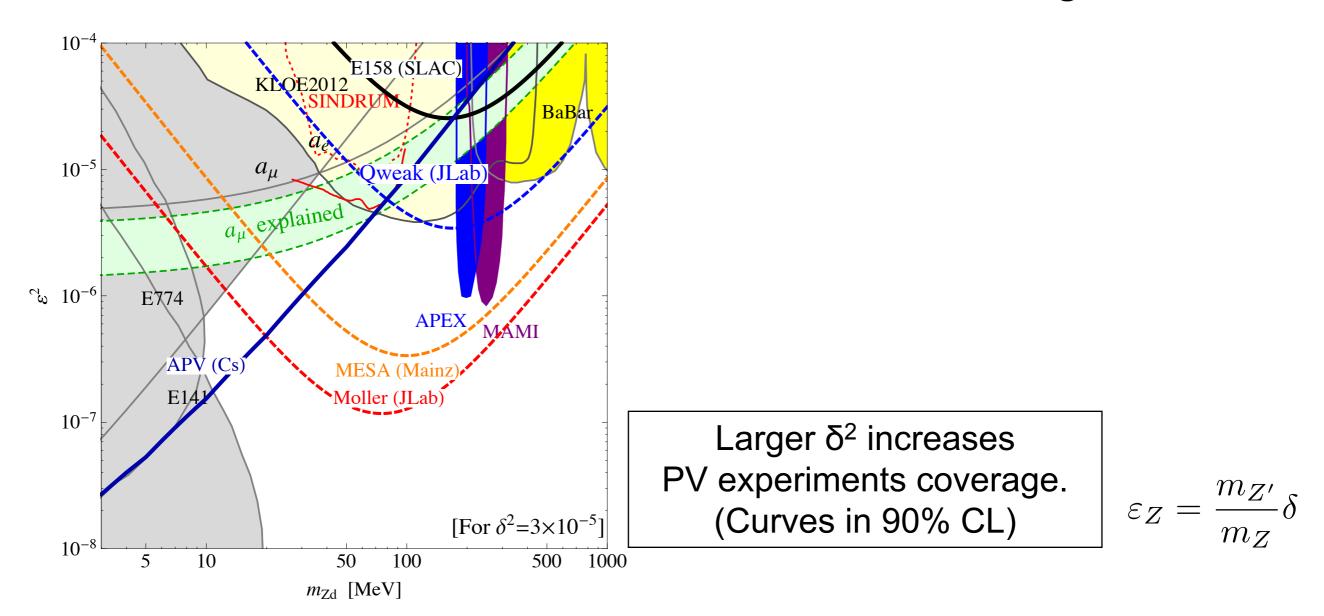
$$J_{NC}$$
(momentum transfer

- 1. Sensitive only to Low- Q^2 (momentum transfer). (Effect negligible for $Q^2 >> m_{Z^2}$)
- 2. Unless ε is extremely small, $\Delta \sin^2 \theta_W$ (Weinberg angle shift) is more sensitive.


"Low-Q² Parity-Violating experiments (measuring Weinberg angle)" seem to be a right place to look: (i) Atomic parity violation, (ii) Polarized electron scattering.

Scattering mediated by Dark Force (Light Z') can be observed only in Low-Energy experiments.

Low-Q² Parity-Violating experiments are Complementary "Dark Force" (with axial couplings) searches!


APV and Polarized Electron Scattering

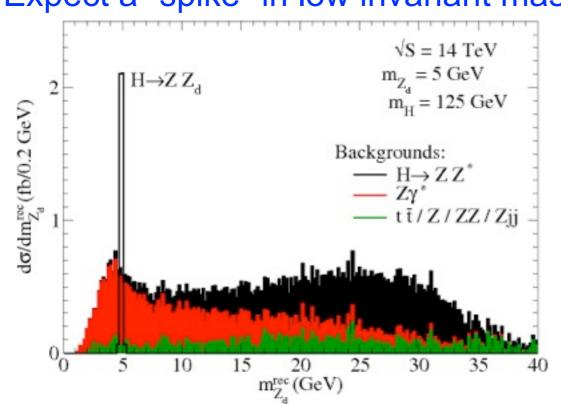
If Dark Z causes muon g-2 anomaly, Qweak (at JLab) $\sin^2\theta_W$ should be in good agreement with the SM prediction. (APV closes the green band at $\delta^2 = 3 \times 10^{-5}$.) In other words, if Qweak sees a significant deviation, it can "rule out" the Dark Z explanation of muon g-2 anomaly.

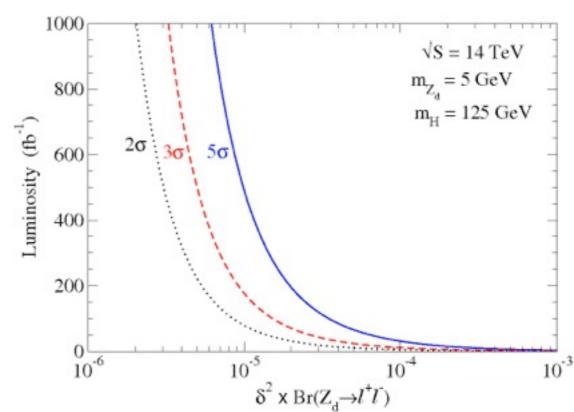
Future experiments (Moller, MESA) will cover more parameter space.

APV and Polarized Electron Scattering

If Dark Z causes muon g-2 anomaly, Qweak (at JLab) $\sin^2\theta_W$ should be in good agreement with the SM prediction. (APV closes the green band at $\delta^2 = 3 \times 10^{-5}$.) In other words, if Qweak sees a significant deviation, it can "rule out" the Dark Z explanation of muon g-2 anomaly.

Future experiments (Moller, MESA) will cover more parameter space.


4. Dark Z Implications for Rare Meson/Higgs Decays


2-body decays into Dark Z (Flavor-changing Meson decays & Higgs decays)

- We can expect enhanced FCNC meson decays (B \rightarrow K Z', K \rightarrow π Z', etc.). Boosted gauge boson (m_{Z'} << m_B) behaves as Imaginary part of Higgs (Goldstone Boson Equivalence Theorem). --> It couples strongly to top-quark in loop.
- Similarly, H → Z Z' decay is sizable and observable at the LHC.

Dark Z search at LHC experiments (Higgs \rightarrow Z Z' \rightarrow Z + II)

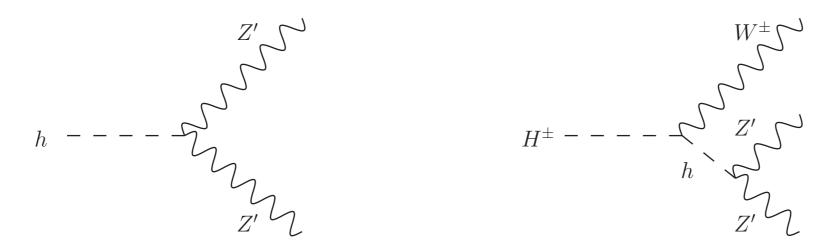
Expect a "spike" in low invariant mass

[Dilepton Invariant Mass]

[Discovery reach at LHC]

Typical Z + 2lepton search at ATLAS/CMS [H \rightarrow Z $Z^{(*)}$]: Impose M_{ℓℓ} \gtrsim 15-20 GeV to reduce BKG (such as Z_{V}^{*}).

But " $M_{\ell\ell}$ ~ several (5-10) GeV" could be a sweet spot for Dark Z bump hunt at LHC (few × 100 fb⁻¹ for discovery).

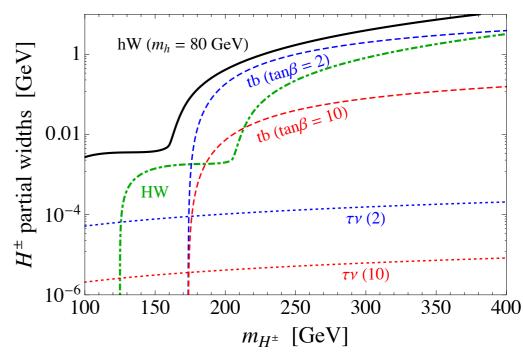

For lower mass $(m_{Z'} \le 5 \text{ GeV})$, the LHC may not be sensitive, but Low-Energy experiments (JLab, B-factory, ...) can search for them.

Rare Higgs decays are Complementary (sensitive to different mass range) to Dark force searches at Low-E experiments (JLab, B-factory).

Other Higgses in 2HDM realizations

If Dark Z (requiring more general Higgs sector) is realized in 2HDM (Dark 2HDM), there are other Higgses: h, H[±]

Their dominant decay modes can be completely different from typical 2HDMs.



Dominant decay modes (in sizable parameter-region):

h (say, 60-90 GeV)
$$\rightarrow$$
 Z' Z'
H[±] \rightarrow h W[±] \rightarrow Z' Z' W[±]

with BR(
$$Z' \rightarrow \ell \ell) \approx O(0.1)$$

Conventional searches for 2HDMs would not find them. (Again, leptons are important signals.)

Summary

"Dark Z" model expands the Dark Force searches

In this talk,

- (i) We generalized the "Dark Photon" to "Dark Z".
- (ii) We expanded the relevant Dark Force search experiments.

With $U(1)_Y \& U(1)'$ kinetic mixing, Z' coupling depends on details of Higgs sector.

- (i) **Dark Photon:** couples to **EM Current** (simplest Higgs sector)
- (ii) **Dark Z:** couples to Neutral Current as well (more general Higgs sector) Dark Z is a natural way to introduce "axial couplings" to "Dark Photon"-like study.

Associated Phenomenology:

- (i) Low-Q² parity violation (ex. Polarized electron scatterings at JLab, Mainz)
- (ii) Low-E bump searches (ex. B \rightarrow K Z' for $m_{Z'} \lesssim 5$ GeV)
- (iii) High-E bump searches (ex. H \rightarrow Z Z' for m_{Z'} \approx 5-10 GeV)

Prospect of Dark Force is Bright.

(With it, New physics discovery may come from many different types of experiments.)

Backup Slides

Bounds on δ

$$\varepsilon_Z = \frac{m_{Z'}}{m_Z} \delta$$

Process	Current (future) bound on δ	Comment	
Low Energy Parity Violation	$ \delta \lesssim 0.08 - 0.01 \ (0.001)$	Fairly independent of m_{Z_d} . Depends on ε .	
Rare K Decays	$ \delta \lesssim 0.01 - 0.001 \ (0.0003)$	$m_{\pi}^2 < m_{Z_d}^2 \ll m_K^2$. Depends on BR(Z _d).	
Rare B Decays	$ \delta \lesssim 0.02 - 0.001 \ (0.0003)$	$m_{\pi}^2 < m_{Z_d}^2 \ll m_B^2$. Depends on BR(Z _d). Some mass gap ~ 3 GeV.	
$H o ZZ_d$	$ \delta \lesssim (0.003 - 0.001)$	$m_{Z_d}^2 \ll (m_H - m_Z)^2$. Depends on BR(Z_d) and background.	

TABLE II: Rough ranges of current (future) constraints on δ from various processes examined along with commentary on applicability of the bounds. These processes have negligible sensitivity to pure kinetic mixing effects.

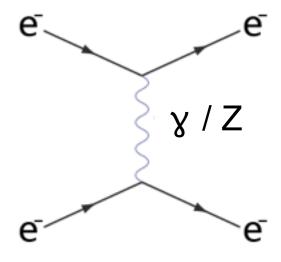
Low-Q² Parity-Violating Experiments

Atomic Parity Violation [Weak nuclear charge $Q_W(Z,N) \simeq -N+Z(1-4\sin^2\theta_W)$]:

 $Q_W(^{133}Cs) = -72.58(43)$ in Cesium Experiment [C. Wieman et al (1985-1988)]

 $Q_W(^{133}Cs) = -73.23(2)$ in SM [reflecting new result by Flambaum et al (2012)]

in a reasonable agreement (1.5σ) .


Polarized Electron Scattering [Left-Right asymmetry $A_{LR} = \sigma_L - \sigma_R / \sigma_L + \sigma_R$]:

sin²θ_W(m_Z)=0.2329(13) SLAC E158 (e⁻e⁻ Moller scattering; Q≈160 MeV) (2005)

 $sin^2\theta_W(m_Z)=0.23125(16)$ at Z-pole average (LEP, SLC)

in good agreement.

$$\Delta \sin^2 \theta_W \simeq -0.42 \varepsilon \delta \frac{m_Z}{m_{Z'}} f(Q^2/m_{Z'}^2)$$

Flavor-changing Rare meson decays into Light Z' (B → K Z', K → π Z')

Sufficiently light Dark Z (for $m_{Z'} \ll m_B$) can be boosted.

[Dark Z]
$$BR(B \to KZ')|_{longitudinal} \simeq 0.1 \, \delta^2$$

[Boosted gauge boson is longitudinally polarized, and it behaves as Imaginary part of Higgs (Goldstone Boson Equivalence Theorem). It couples strongly to heavy particles.]

Compare this to Dark Photon case (typically, $|\varepsilon| \leq 10^{-3}$).

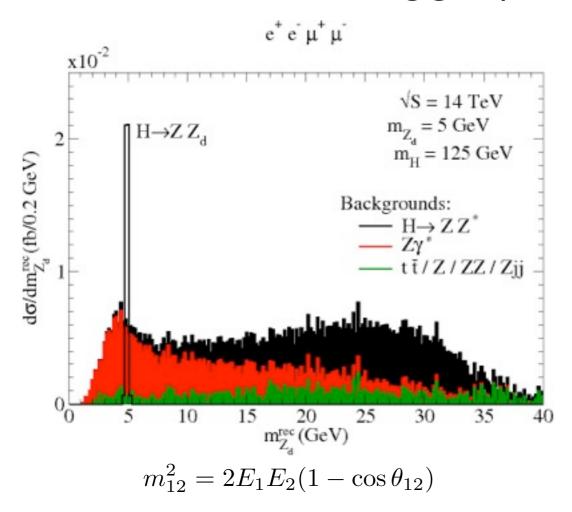
[Dark Photon] BR(
$$B \to KZ'$$
) $\sim 6 \times 10^{-7} \, \varepsilon^2$ (for $m_{Z'} \simeq 1 \, \text{GeV}$)

[Batell, Pospelov, Ritz (2009)]

[No GBET enhancement because its longitudinal mode does not contain SM Higgs doublet.]

SM-like Higgs (125 GeV) \rightarrow ZZ' (Connection of High-E and Low-E physics)

SM-like Higgs (mass ~ 125 GeV) was discovered at LHC experiments. (It is about time to do precision Higgs study).


[Dark Z] (HZZ' coupling) =
$$\epsilon_Z$$
 (HZZ coupling)
$$= \epsilon_Z = \epsilon_Z$$
[Dark Photon] (HZZ' coupling) = loop-suppressed

Also GBET provides an enhancement for boosted Z'.

SM example: [Higgs-G-G coupling] \sim g m_H^2/m_Z vs. [Higgs-V-V coupling] \sim g m_Z

For
$$m_{Z_d}^2 \ll D^2$$
 (with $D^2 \equiv m_H^2 - m_Z^2$), we have
$$\Gamma(H \to Z Z_d) \ = \ 4\pi \frac{\sqrt{\lambda(m_H^2, m_Z^2, m_{Z_d}^2)}}{64\pi^2 m_H^3} \sum_{\rm pol} |\mathcal{M}|^2$$

$$\simeq \ \frac{D^2}{16\pi m_H^3} \left(\mathcal{C}_{HZZ}^{\rm SM}\right)^2 \left(\varepsilon_Z^2 \frac{D^4}{4m_Z^2 m_{Z_d}^2} + 3\varepsilon_Z \kappa_Z \frac{D^2}{m_Z^2} + \kappa_Z^2 \frac{D^4}{2m_Z^4} + \tilde{\kappa}_Z^2 \frac{D^4}{2m_Z^4}\right)$$

Cuts in SM-like Higgs (125 GeV) \rightarrow ZZ' \rightarrow 4-leptons

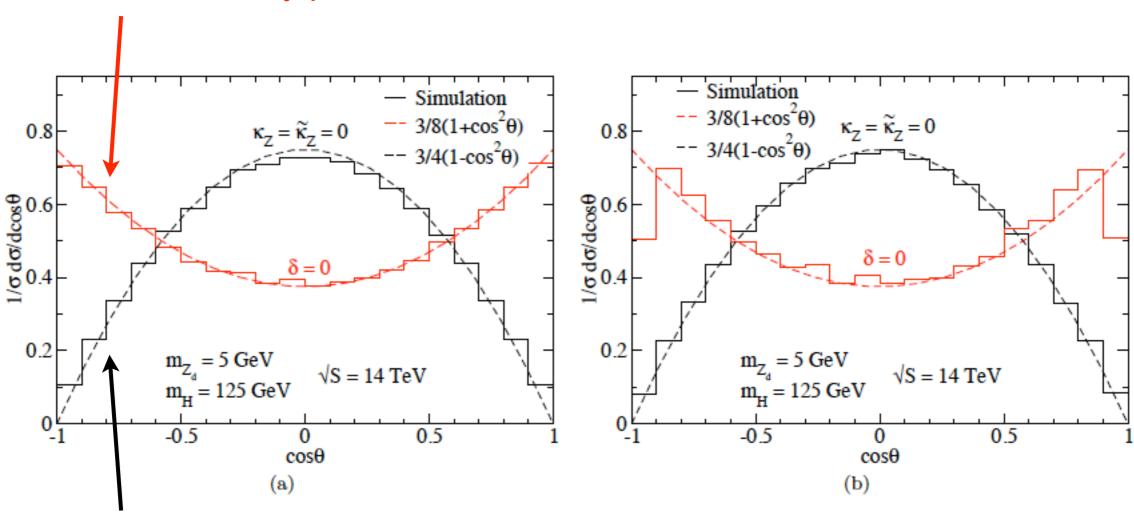
$$p_T^{\ell} > 4 \text{ GeV}$$

ATLAS trigger for $H \to ZZ^*$ (one $p_T^{\ell} > 24 \text{ GeV}$ or two $p_T > 13 \text{ GeV}$)

$$|\eta^{\ell}| < 2.5$$

$$\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} > 0.3$$

$$|m_{4\ell} - m_H| < 2 \text{ GeV}$$


$$|m_Z^{\text{rec}} - m_Z| < 15 \text{ GeV}$$

$$m_{Z_d} = 5 \text{ GeV}$$
 $2\sigma \text{ (Excl.)} \quad 3\sigma \text{ (Obs.)} \quad 5\sigma \text{ (Disc.)}$
No K-factors $78 \text{ fb}^{-1} \quad 180 \text{ fb}^{-1} \quad 490 \text{ fb}^{-1}$
 $+K\text{-factors} \quad 33 \text{ fb}^{-1} \quad 75 \text{ fb}^{-1} \quad 210 \text{ fb}^{-1}$

	$m_{Z_d} = 10 \text{ GeV}$			
	2σ (Excl.)	3σ (Obs.)	5σ (Disc.)	
No K-factors	$100 \; {\rm fb}^{-1}$	230 fb^{-1}	$640 \; {\rm fb^{-1}}$	
+K-factors	$42 \; {\rm fb^{-1}}$	$95 \; {\rm fb^{-1}}$	$260 \; {\rm fb^{-1}}$	

Angular Distribution of Lepton from $H \rightarrow Z Z'$

Transversely polarized Z'

Longitudinally polarized Z' ("Dark Z" type)